Math 261

Fall 2023
Lecture 9

Feb 19-8:47 AM

Evaluate $\lim _{x \rightarrow 1} \frac{x^{4}+x-2}{x-1}=\frac{1^{4}+1-2}{1-1}=\frac{1+1-2}{1-1}=\frac{0}{0}$
$\Rightarrow \lim _{x \rightarrow 1} \frac{x^{4}+x-2}{x-1}=\lim _{x \rightarrow 1} \frac{\left(x^{3}+x^{2}+x+2\right)(x-1)}{x-1}$
Nom. $1^{4}+1-2=0$
Synthetic DiN.

$$
\text { Given } \begin{aligned}
& f(x)=3 x^{2}-4 x+1 \\
& \text { Evaluate } \lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \\
&=\lim _{x \rightarrow a} \frac{3 x^{2}-4 x+1-\left(3 a^{2}-4 a+1\right)}{x-a} \\
&=\lim _{x \rightarrow a} \frac{3 x^{2}-4 x-3 a^{2}+4 a}{x-a} \\
&=\lim _{x \rightarrow a} \frac{3\left(x^{2}-a^{2}\right)-4(x-a)}{x-a} \\
&=\lim _{x \rightarrow a} \frac{3(x+a)(x-a)-4(x-a)}{x-a} \\
&=\lim _{x \rightarrow a} \frac{(x-a)[3(x+a)-4]}{x-a} \\
&=\lim _{x \rightarrow a}[3(x+a)-4]=3(a+a)-4 \\
&=6 a-4]
\end{aligned}
$$

Sep 12-10:31 AM

$$
\begin{aligned}
& \text { Given } f(x)=x^{-2} \\
& \text { Evaluate } \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+h)^{-2}-x^{-2}}{h} \quad \text { By Direct Subs } \Rightarrow \frac{0}{0} \\
& =\lim _{h \rightarrow 0} \frac{\left[(x+h)^{-1}\right]^{2}-\left[x^{-1}\right]^{2}}{h}=\lim _{h \rightarrow 0} \frac{\left(\frac{1}{x+h}-\frac{1}{x}\right)\left(\frac{1}{x+h}+\frac{1}{x}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(\frac{1}{(x+h)^{2}}\right)-\left\{\frac{1}{x^{2}}\right]}{h}=\lim _{h \rightarrow 0} \frac{x^{2}-(x+h)^{2}}{h(x+h)^{2} \cdot x^{2}} \\
& L_{L C D}=\frac{(x+h)^{2} \cdot x^{2}}{x^{2}} \\
& =\lim _{h \rightarrow 0} \frac{x^{2}-x^{2}-2 x h-h^{2}}{h x^{2}(x+h)^{2}}=\lim _{h \rightarrow 0} \frac{\not h(-2 x-h)}{\not K x^{2}(x+h)^{2}} \\
& =\frac{-2 x-0}{x^{2}(x+0)^{2}}=\frac{-2 x}{x^{4}}=\frac{-2}{x^{3}}
\end{aligned}
$$

Function $f(x)$ is continuous at $x=a$
if

3) $\lim f(x)=f(a)$ $x \rightarrow a$

In terms of graphs,
No hole, No gap, no jump. at $x=a$.

Is $f(x)=\sqrt{x}+x$ cont. at $x=4$?

$$
\begin{aligned}
& f(4)=\sqrt{4}+4=6 \\
& \lim _{x \rightarrow 4} f(x)=\lim _{x \rightarrow 4}[\sqrt{x}+x]=\sqrt{4}+4=6
\end{aligned}
$$

Since $\lim _{x \rightarrow 4} f(x)=f(4)$, then $f(x)$ is Cont. at $x=4$.

Sep 12-10:43 AM

$$
\begin{aligned}
& \lim _{x \rightarrow 2} f(x)=4 \\
& F(2)=-3 \\
& \lim _{x \rightarrow 2} f(x) \neq f(2)
\end{aligned}
$$

$$
\therefore f(x) \text { is not }
$$

cont. at $x=2$.

Consider the graph of
$f(x)$ given below $\quad f(2)=3$

$$
\begin{aligned}
& \lim _{x \rightarrow 2^{+}} f(x)=1 \\
& \lim _{x \rightarrow 2^{-}} f(x)=3 \\
& \lim _{x \rightarrow 2} f(x) \quad \text { D.N.E. }
\end{aligned}
$$

Use ε and δ definition to prove $\lim _{x \rightarrow 2}(5 x-3)=7$
$\begin{array}{ll}f(x)=5 x-3 & \text { 1) verify the limit } \\ L=7 & \end{array}$
$a=2$

$$
\lim _{x \rightarrow 2}(5 x-3)=5(2)-3=10-3=7
$$

$\mid S(x)-L<\varepsilon$ whenever $|x-a|<\delta$
$|5 x-3-7|<\varepsilon$ whenever $|x-2|$ 国
$|5 x-10|<\varepsilon \rightarrow$ Divide by 5
$|5(x-2)|<\varepsilon \int \quad \begin{aligned}|x-2|<\text { 图 }\end{aligned}$

If $\varepsilon=1, \quad \delta=\frac{1}{5}=.2$
choose $x=2.1$
$f(2.7)=5(2.1)-3=7.5$

Sep 12-11:04 AM

